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Abstract

Demand for housing increases if Automatic Workout Mortgage (AWM) is used and at-
tains maxima for those intending to reverse-mortgage α ≈ 40% of equity (without work-
out) and about α ≈ 80% of equity (with AWM). We therefore assert that AWM is par-
ticularly suited for those who intend to sell or reverse-mortgage a significant fraction of
their home equity before retirement. Insurance provided via AWM inhibis precautionary
saving motives by making housing more attractive to risk averse borrowers. Consump-
tion is reduced as more housing is purchased and borrowing increased. AWM improves
expected utility by a dollar equivalent of about $40, 000 to $55, 000, which represents up
to 55% of the initial value of the house ($100, 000 in our simulations).



1 Introduction

One of the fundamental changes that should be done is to revise mortgage markets so that
mortgages have workouts that are planned. During the recent crisis there were 50 mil-
lions households underwater, which means they were essentially insolvent. They werent
getting any help.

Housing finance is still stuck in relatively a primitive stage. Insolvent households gen-
erate negative feedback loops in the economy. When home prices are falling people start
realizing they are out of money i.e. they are in debt more than they own. For example,
they cant get a home equity loan anymore. To keep on mortgage payments they may
have no choice but to cut back their spending. This in turn can put the whole economy in
a tailspin. Therefore, we should encourage that mortgages include a plan for the next cri-
sis. Such plan can be provided by the private insurance sector. This would help reducing
negative feedback loops in the economy.

There have been a growing number of proposals to change our mortgage institutions.
In the US, the Dodd-Frank act recommnded a study of shared appreciation mortgages. In
the UK a budget proposal [10] recommended the first half of negative equity losses to be
covered by private insurance and the government acting as insurer of last resort for the
second half.1

We focus on Automatic Workout Mortgages (AWMs), a two-in-one product including
a home loan plus an automatic workout to prevent negative equity. First, we consider
the standard insurance framework and recover the standard result that the homeowner
prefers to be fully insured if the premium is fair. We then show that the homeowner
underinsures if the premium is too high compared to the actual probability of the loss
happening.

Second, we set up a basic two-period model where people will sell their house and
consume the proceeds in retirement. Within this framework we show that there is a wel-
fare gain to insure house values via AWMs. While assuming that people leave no bequests
may seem unrealistic, there is evidence [CITE?] that the retirement trends are changing.
Notably, the continuing care retirement community (CCRC) is a concept that is growing
rapidly around the world. There is a CCRC crisis in the US today, after the drop in home

1In the end the government opted for a scheme called Help to Buy Mortgage Guarantee. It is aimed at
increasing affordability by raising the maximum loan to value ratios to 95%. It does not provide automatic
workouts and there is no help of the private sector. The government charges a premium. In return, the
taxpayer covers up to 15% of the loan. The lender gets a refund if a default occurs within seven years.
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prices, the CCRCs have a lot of vacancies, and this is no doubt because of the absence of
AWMs.

Third,
This paper is organized as follows. In section 1 we cast our workout choice problem

within the standard insurance framework. ETC.

2 House price workout as simple insurance

In this section we advocate a simple mortgage workout. To this end we work within the
standard paradigm of insurance theory (see e.g. Picard [9], Eeckhoudt et al. [5]).

There are two important implications. First, in absence of imperfections the optimal
workout is a full workout. Second, the homeowner will prefer a partial workout if the
insurer raises the premium to e.g. pass through administrative costs.

The initial mortgage balance is H and equal to the value of the house.2 At the end of
the period there is risk that the value of the house will drop by l to H − l, where

0 ≤ l ≤ H . (1)

The household has revenue y and the non-housing consumption is c. If the house price
drops, the homeowner is underwater because the mortgage balance is higher than the
house value. The question is whether or not the household will prefer insuring the house
against real estate prices going down. When the house is sold at maturity, the terminal
wealth is equal to

W = y− c+ HT − H > 0 (2)

HT =

{
H − l with probability p
H with probability 1− p

, (3)

where c ≥ 0 is the non-housing consumption. Both the consumption c and the terminal
wealth W depend the random behaviour of the terminal house price HT. However, if
the individual who maximizes the expected utility of terminal consumption leaves no

2In our analysis the homeowner is repaying a 100% mortgage. It is straightforward to extend our case
to situations with downpayment i.e. with loan to value ratio less than one.
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bequest (W = 0), then:

c = y+ HT − H =

{
y− l with probability p
y with probability 1− p

. (4)

Effectively, in this simple example, all the income y will be consumed if the house price
remains at the level H. However, if the loss on the house value is l > 0, consumption also
drops by l. In this case the house price drop affects consumption of the non-housing good
and the expected utility of the terminal consumption is

E [u (c)] = pu (y− l) + (1− p) u (y) . (5)

However, if automatic workout is offered, after paying the insurance premium π the
homeowner’s consumption will not suffer any further loss, so that, in both cases the ter-
minal consumption for the borrower is non-random

c̄ = y− π . (6)

The insurance theory tells us (see for example Picard [9] or [5]) that the insurance pre-
mium for a risk-neutral insurer is actuarially fair when the premium π equals the ex-
pected loss

π = pl , (7)

implying
c̄ = y− pl . (8)

Proposition 1 With automatic full workout against the risk of house prices falling, the home-
owner achieves a higher utility

u (c̄) > E [u (c)] (9)

Proof. By Jensen’s inequality

u (p (y− l) + (1− p) y) > pu (y− l) + (1− p) u (y) (10)

which implies (9).
Let’s now assume that the homeowner is offered a choice between full and partial

state-contingent workout and that the insurance premium is proportional to the refund
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(see Picard [9]). The state-contingent workout is

w =

{
lp with probability p
0 with probability 1− p

(11)

such that lp ≤ l and the premium is klp where k < 1. Therefore, for any assumed coef-
ficient k > 0 the amount of insurance lp fully characterizes the partial workout contract{

klp, lp
}

.

Proposition 2 Homeowner prefers a partial workout (lp < l) if the insurance premium propor-
tion k is higher than the probability p of the house becoming underwater.

Proof. Homeowner maximizes the expected utility of terminal consumption by choosing
the optimal workout amount lp

max
lp

E [u (c)] (12)

s.t. c = y+ HT − H + w− klp . (13)

We have
E [u (c)] = pu

(
y− l + lp − klp

)
+ (1− p) u

(
y− klp

)
. (14)

The first order condition is

(1− k) pu′
(
y− l + (1− k) lp

)
− k (1− p) u′

(
y− klp

)
= 0 , (15)

implying
u′
(
y− l + (1− k) lp

)
u′
(
y− klp

) =
k (1− p)
p (1− k)

. (16)

In particular, when k = p, we have

u′
(
y− l + lp − klp

)
u′
(
y− klp

) = 1 , (17)

implying full insurance of the house price risk

lp = l . (18)
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If, on the contrary, k > p then{
k
p
> 1,

1− p
1− k

> 1
}
=⇒ k (1− p)

p (1− k)
> 1 , (19)

implying
u′
(
y− l + lp − klp

)
> u′

(
y− klp

)
=⇒ lp < l ,

i.e. the homeowner under-insures if the premium charged is higher than the probability
of the event.

In this section we motivated mortgage workouts using standard arguments of insur-
ance theory. When insurance premia are based on actual probabilities, the insurer breaks
even only on average, in the long run. Contracts are pooled together and there is reliance
on the law of large numbers to reduce risk. In particular, the insurer cannot eliminate
exposure to major risks such as bursting of a house price bubble, to which most of the
contracts in the pool are exposed to.

There are, however, many alternative ways to approach the calculation of insurance
premia. For a review of the different insurance paradigms see, for example Embrechts [6]
or Laeven and Goovaerts [8]. In particular, when markets for underlying risks exist the
risk-neutral construction can be used. The advantage of it is that the risk is eliminated
at every time a delta hedge portfolio is constructed.3 Therefore, in the next section we
introduce the state-contingent approach to pricing mortgage workouts.

3 Automatic workout mortgage and housing consumption

choice in a simple utility maximization model

In this section we introduce a simple intertemporal model where the housing consump-
tion is financed by a workout mortgage. Our setup is derived from the classic model
of housing choice first considered by Henderson and Ioannides [7]. Risk averse home-
owner chooses housing consumption hc financed by a mortgage loan L. When workout
is offered, it is priced by a risk-neutral insurer who has access to markets for house price
risk.

3For an excellent illustration of the risk-neutral approach v.s. the law of large numbers approach see
the preamble in Baxter and Rennie [1], “The parable of the bookmaker,” pp. 1–2, demonstrating that the
bookmaker is always better off by not using the actual probabilities to compute odds.
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3.1 No workout offered

Housing and consumption provide utility in period 1. In period 2 the house is sold at
uncertain market price P

(
1+ θ̃

)
. Homeowner chooses {hc, S} to maximize

max
{hc,S}

U (c1, hc) + E [V (c2, hc)] (20)

s.t. c1 = y1 − S− (P− L)hc

c2 = y2 + S(1+ r) + (αP(1+ θ̃)− L(1+ rm)− T)hc ,

where:

• y1, y2 are incomes in period 1 and 2;

• c1, c2 are consumptions of non-housing good in period 1 and 2;

• hc is the consumption of housing (chosen in period 1);

• S are savings at riskless rate r made in period 1;

• L is the mortgage per one unit of housing taken at the mortgage rate rm ≥ r;

• T is the cost of ownership (such as repairs and maintenance) of one unit of housing
payable in period 2;

• P is the price of one unit of housing in period 1;

• θ̃ is the random return on housing, to be observed in period 2;

• E is the expectation operator under the actual probability measure;

• α percentage of the house value reverse-mortgaged in period 2.

Note in particular that the period 1 and 2 utility functions both depend on hc. Still, the
person who buys a house is locking in an endowment of housing for period 2, but not of
consumption c2. Consistent with Cocco [4], Campbell and Cocco [2], [3] and Van Hemert
[12] we specify the first utility function to

U (c1, hc) =

(
c1−η

1 hη
c

)1−γ

1− γ
(21)
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where γ is the relative risk aversion and η measures preference of housing v.s. non-
housing consumption. Furthermore, we parametrise V (c2, hc) as follows

V (c2, hc) = βU

(
c

1−(1−α)η
1−η

2 , h1−α
c

)
+ β1.5 (1− α) B (hc) . (22)

where β is the time preference coefficient. The period 2 utility inherits its form from
period 1 utility. The utility of unconsumed bequest left at the end of period 2 is B (hc)

B (hc) =

(
P(1+ θ̃)hc

)1−γ

1− γ
(23)

If the house is sold4 (α = 1) there is no bequest left, (1− α) = 0, and the utility in period
2 is insensitive to the choice of hc

V (c2, hc)|α=1 = βU
(

c
1

1−η

2 , h0
c

)
= β

c1−γ
2

1− γ
. (24)

This assumes no housing demand in later years. This is realistic as a stylization of the idea
that people no longer have children living with them and so sometimes do downsize or
rent. This choice of utility for period 2 has them downsize housing to zero. So, people
who expect to live in a retirement home can buy AWMs. Also, those who stay in their
homes to the end let their houses depreciate as they age, do not modernize them, and
so in a sense they are still downsizing. Also, those who plan to leave a bequest to their
children might be concerned about the real value of their gift. The lump sum received
at the beginning of period 2 can be used for purchasing e.g. retirement services such as
CCRCs.5

However the world isn’t a one-size-fits-all. While some people do plan to downsize
dramatically and move to a retirement home when they retire, most people do not. While
that may be changing, people don’t usually downsize when they retire [CITE?], they just
age in place. This alternative leads towards including bequests of the unconsumed hous-
ing. If the house is kept (α = 0)

V (c2, hc)|α=0 = βU (c2, hc) + β1.5B (hc) . (25)

4Or, equivalently, fully reverse-mortgaged, see below.
5In our simplified setup these generate utility in period 2 via increased consumption c2 rather than

through housing capacity hc.
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Reverse-mortgaging amounts to selling a fraction α ∈ (0, 1) of the house in period
2. The homeowner stays in place while taking advantage of the proceeds and the AWM
guarantee. The mortgageor remains in the house and consumes periodic rent during a
finite amount of time (until the end of period 2). The limiting case α → 1 i.e. full reverse
mortgaging is akin to a sale of the property.

3.1.1 First order conditions

If the choice of savings S is not constrained, the first order conditions are

U(0,1) (c1, hc) + (L− P)U(1,0) (c1, hc) +

+E
[
V(0,1) (c2, hc) + (αP(1+ θ̃)− L(1+ rm)− T)V(1,0) (c2, hc)

]
= 0 (26)

−U(1,0) (c1, hc) + (1+ r) E
[
V(1,0) (c2, hc)

]
= 0 . (27)

After eliminating U(1,0) (c1, hc) the first condition becomes

U(0,1) (c1, hc) + E
[
V(0,1) (c2, hc)

]
=

= E
[(
(P− L) (1+ r)− αP(1+ θ̃) + L(1+ rm) + T

)
V(1,0) (c2, hc)

]
. (28)

If the following conditions are satisfied:

1. Home is 100% financed by the mortgage (P = L)

2. The return on housing matches the mortgage rate θ = rm

3. The house is sold or 100% reverse-mortgaged in period 2 (α = 1)

then the housing decision is based on how the expected marginal housing consumption
and the expected marginal consumption of non-housing good in period 2 compare to
marginal cost of ownership

U(0,1) (c1, hc) + E
[
V(0,1) (c2, hc)

]
E
[
V(1,0) (c2, hc)

] = T , (29)
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which can also be written as a trade-off between housing and non-housing consumptions
in period 1 v.s. the present value of the marginal cost of ownership

U(0,1) (c1, hc) + E
[
V(0,1) (c2, hc)

]
U(1,0) (c1, hc)

=
T

1+ r
. (30)

In applications that follow we will assume that housing is 100% financed by the mortgage
(P = L). The first FOC then is

U(0,1) (c1, hc) + E
[
V(0,1) (c2, hc)

]
=

= −E
[(

P
(
α(1+ θ̃)− (1+ rm)

)
− T

)
V(1,0) (c2, hc)

]
. (31)

The cost of ownership further increases in bad times when the realized house price growth
doesn’t make up for the mortgage rate (θ < rm) or the equity is not fully released via sale
or reverse mortgaging (α < 1).

3.2 Workout offered

A risk neutral insurer offers a fairly priced insurance to remove the risk of falling under-
water. Such insurance can be standardized to depend on the loan to value ratio

λ =
L
P

(32)

and the distributional characteristics of θ̃. The mortgage provider adds an automatic work-
out W to the loan so that consumption in period 2 is shielded from the house price risk

c2 = y2 + S(1+ r) + (αP(1+ θ̃)− L(1+ rm) + W̃ − T)hc (33)

where W̃ = W
(
θ̃
)

is the insurance payoff contingent on realisation of θ̃. As a first attempt
to design the negative equity insurance we impose the following condition

αP(1+ θ̃)− L(1+ rm) + W̃ ≥ 0 for all θ , (34)

so that the household never falls underwater. This is a strong requirement as most home-
owners who get underwater do not default on mortgage payments. However, under-
water households are likely to cut back on spending. This is bad for the economy and
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therefore the ultimate goal of workouts is to prevent that happening. To achieve this, the
mortgage provider crafts the workout W by taking a long position in αP puts on θ, each
having payoff (K− θ)+

W̃ = W
(
θ̃
)
= αP max

(
K− θ̃, 0

)
= αP

(
K− θ̃

)+ . (35)

If the strike price K is equal to

K =
L (1+ rm)− αP

αP
=

λ

α
(1+ rm)− 1 . (36)

then the following Proposition holds.6

Proposition 3 A home loan with automatic workout W never never falls in negative equity.

Proof. For α > 0 we have

αP(1+ θ̃)− L(1+ rm) + W̃ = αP(1+ θ̃)− L(1+ rm) + αP
(
K− θ̃

)+ (37)

= αP(1+ θ̃)− L(1+ rm) (38)

+αP max
(

L (1+ rm)− αP
αP

− θ̃, 0
)

(39)

= αP(1+ θ̃)− L(1+ rm) (40)

+max
(

L (1+ rm)− αP
(
1+ θ̃

)
, 0
)

(41)

= max
(
0, αP(1+ θ̃)− L(1+ rm)

)
≥ 0 , (42)

which proves that the balance will always be non-negative. When α = 0 there are no
proceeds from sale of the house to hedge, the workout degenerates to W = L (1+ rm)

and the left hand side of (34) is zero. In this situation the loan has de facto to be repaid
from earnings y1, y2. After this happens the protection expires and the bequest is then
exposed to house price risk.

In practice, puts can be written on a risk variable ξ which is tradable and highly cor-
related with θ, such as a home price index. In this case workouts can be provided by a
competitive risk-neutral insurer. Insurer will use the market where the θ risk is traded to
delta hedge its exposure. This is in contrast to pooling house price insurance contracts

6When α = 0 there are no proceeds from sale of the house and the workout degenerates to W =
L (1+ rm).
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together. Typical risks, such as fire risk, are more amenable to traditional insurance prac-
tices, such as pooling policies together to diversify the risk. However, in case of house
price risk such diversification is difficult to achieve. Here, the risk insured includes a
burst of a price bubble. In practice all mortgaged contracts will be affected following a
sudden drop in house prices. Insurer may default if traditional diversification is used. We
assert that delta hedging via the financial market will do a better job to hedge the house
price risk.

3.2.1 Workout premium

To illustrate how the house price risk can be priced and delta hedged we specify the risk
variable to

θ̃ =

{
θu with probability 1− p
θd with probability p ,

(43)

where p is the actual probability of house price going down. We also require −1 ≤ θd ≤
r < rm ≤ θu < ∞ to exclude arbitrage. Supplying one house price insurance contract
provides the insurer with insurance premium π at time 1. However, it also exposes the
insurer to the risk of being liable for paying

(
K− θ̃

)+ at maturity if house prices fall.

Proposition 4 Fairly priced continuous workout premium is

π =
1

1+ r
E
[(

K− θ̃
)+]

=
1

1+ r

[
q (K− θd)

+ + (1− q) (K− θu)
+
]

, (44)

where E denotes taking expectation under the pricing measure and

q =
θu − r

θu − θd
(45)

is the corresponding (risk-neutral) probability.

Proof. Investing $1 in the riskless asset gives 1 + r in both states of nature. Investing
$1 in the asset perfectly correlated with house price index yields either 1+ θu or 1+ θd.
Therefore, the state price vector can be obtained by solving the system{

1 = (1+ r)ψd + (1+ r)ψu

1 = (1+ θd)ψd + (1+ θu)ψu ,
(46)
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which gives

{ψd, ψu} =
{

1
1+ r

θu − r
θu − θd

,
1

1+ r
r− θd

θu − θd

}
(47)

and the fair pricing (44) and (45) follows

π = (K− θd)
+ ψd + (K− θu)

+ ψu . (48)

3.2.2 Hedging the house price risk

In addition to the cost π of the workout insurance7 it is also possible to find the replicating
strategy. The insurer uses the premium π > 0 collected from the household to form a
delta hedging portfolio

π = ∆+ b , (49)

where ∆ is the position in the house price index and b is the position in the riskless asset.
There is no cash left on hand in building the delta hedge portfolio, which is consistent
with no arbitrage profit being made at time 1. Similarly, at time 2, the hedge portfolio
{∆, b} replicates the workout contract to generate exactly the amount of refund needed{

∆ (1+ θd) + b (1+ r) = (K− θd)
+

∆ (1+ θu) + b (1+ r) = (K− θu)
+ .

(50)

Solving this system we obtain the hedge ratio ∆

∆ =
(K− θu)

+ − (K− θd)
+

θu − θd
≤ 0 , (51)

as well as the position in the riskless asset

b =
(K− θd)

+ (1+ θu)− (K− θu)
+ (1+ θd)

(θu − θd) (r+ 1)
≥ 0 . (52)

The sign of b (∆) is positive (negative) because θu > θd implies (1+ θu) > (1+ θd) and
(K− θd)

+ > (K− θu)
+ ≥ 0. Therefore, the insurer takes a short position in the house

7Shiller, Wojakowski, Ebrahim and Shackleton [11] derive a closed form formula for the analogue of
premium π in a continuous-time model.
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price index and invests the proceeds and the premium π in the riskless asset at time 1.
When the index decreases, this frees a positive amount of cash from the hedge portfolio
to provide exactly the amount

(
K− θ̃

)+ ≥ 0 required for paying the workout to the
homeowner.

3.2.3 First order conditions with full workout

If full workout is offered the household chooses housing consumption and savings {h∗c , S∗}
to maximize

max
{hc,S}

U (c1, hc) + E [V (c2, hc)] (53)

s.t. c1 = y1 − S− (αPπ + P− L)hc

c2 = y2 + S(1+ r) + (αP(1+ θ̃)− L(1+ rm) + αP
(
K− θ̃

)+ − T)hc .

For unconstrained choice of S the first order conditions are

U(0,1) (c1, hc) + (L− P− αPπ)U(1,0) (c1, hc) +

+E
[
V(0,1) (c2, hc) + (αP(1+ θ̃)− L(1+ rm) + αP

(
K− θ̃

)+ − T)V(1,0) (c2, hc)
]
= 0(54)

−U(1,0) (c1, hc) + (1+ r) E
[
V(1,0) (c2, hc)

]
= 0 .(55)

By slightly abusing notation (introducing “curly” U =U +V) denote

Uhc = U(0,1) (c1, hc) +V(0,1) (c2, hc) (56)

Uc1 = U(1,0) (c1, hc) (57)

Uc2 = V(1,0) (c2, hc) (58)

Replacing U(1,0) (c1, hc) in the first equation (54) we obtain

E [Uhc ]

E [Uc2 ]
= (αPπ + P− L) (1+ r) + (59)

+
E
[
(L(1+ rm)− αP(1+ θ̃)− αP

(
K− θ̃

)+
+ T)Uc2

]
E [Uc2 ]
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When housing is 100% financed by the mortgage (P = L, λ = 1) we have

K =
1
α
(1+ rm)− 1 (60)

which gives

L(1+ rm)− αP(1+ θ̃)− αP
(

1
α
(1+ rm)− 1− θ̃

)+
= P

(
(1+ rm)− α

(
1+ θ̃

))
− P

(
(1+ rm)− α

(
1+ θ̃

))+ (61)

= P min
{
(1+ rm)− α

(
1+ θ̃

)
, 0
}

. (62)

The above expression (59) further simplifies to

E [Uhc ]

E [Uc2 ]
= αPπ (1+ r) + (63)

+
E
[
(P min

{
(1+ rm)− α

(
1+ θ̃

)
, 0
}
+ T)Uc2

]
E [Uc2 ]

.

Note that elements on the right hand side express costs or benefits of ownership. Costs
are non-negative while benefits are non-positive quantities. The two costs are: the main-
tenance costs T ≥ 0 and the future value of the workout insurance premium unit cost
π ≥ 0 (paid at time 1).

It is particularly simple to interpret the model when α = 1. Benefits materialize only
when the return on housing exceeds the cost of mortgage financing i.e. when θ > rm.
Benefits appear as negative costs: min

(
0, rm − θ̃

)
≤ 0. If, in addition, the return on hous-

ing never exceeds the mortgage rate θ ≤ rm, the trade-off between housing hc and future
(present) consumption c2 (c1) is determined by the future (actual) value of the workout
cost Pπ and the (present value of) the maintenance cost T

α = 1∧ θ ≤ rm, ∀θ =⇒ E [Uhc ]

E [Uc2 ]
= Pπ (1+ r) + T (64)

⇐⇒ E [Uhc ]

Uc1

= Pπ +
T

1+ r
(65)

The trade-off between current consumption c1 and future consumption c2 is, as usual,
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determined by the riskless rate of borrowing r.

Uc1

E [Uc2 ]
= 1+ r (66)

3.3 Specification

We set L = P and focus on comparing two cases:

1. Without workout, where we solve the system of FOCs (31) and (27){
E [Uhc ] = −E

[(
P
(
α(1+ θ̃)− (1+ rm)

)
− T

)
Uc2

]
Uc1 = (1+ r) E [Uc2 ]

(67)

subject to budget constraints obtained from (20) for L = P

c1 = y1 − S (68)

c2 = y2 + S(1+ r) +
[
P
(
α(1+ θ̃)− (1+ rm)

)
− T

]
hc . (69)

2. With workout, where we solve the system of FOCs (63) and (55){
E [Uhc ] = αPπ (1+ r) E [Uc2 ]− E

[
(P
(
α
(
1+ θ̃

)
− (1+ rm)

)+ − T)Uc2

]
Uc1 = (1+ r) E [Uc2 ]

(70)

subject to budget constraints obtained from (53) for L = P and for K given by (60)

c1 = y1 − S− αPπhc (71)

c2 = y2 + S(1+ r) +
[

P
(
α
(
1+ θ̃

)
− (1+ rm)

)+ − T
]

hc . (72)

We note in particular that with utility specifications (21), (22) and (23) we have

V(0,1) (c2, hc)
∣∣∣
α=1

= 0 =⇒ E [Uhc ]|α=1 = U(0,1) (c1, hc) . (73)

Furthermore, it is clear that the major difference between systems (67)–(68) and (70)–
(72) is that in the latter case the homeowner pays the premium αPπhc upfront in order to
remain “above water” later on

P
(
α
(
1+ θ̃

)
− (1+ rm)

)+ ≥ 0 (74)
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3.4 Simulations

We numerically solve two systems, one with and one without workout, for h, S. When
α = 1 the system without workout is

(1−η)(hη(y1−S)1−η)
1−γ

β(y1−S)(r+1) = p (B− hAd)
−γ + (1− p) (B− hAu)

−γ

η(hη(y1−S)1−η)
1−γ

βh = pAd (B− hAd)
−γ + (1− p)Au (B− hAu)

−γ
(75)

where

Ad = P (rm − θd) + T (76)

Au = P (rm − θu) + T (77)

B = S (r+ 1) + y2 (78)

The system with workout is

(1−η)(θd−θu)

(
hη

(
C

(r+1)(θd−θu)

)1−η
)1−γ

βC = p (B− hAd,W)
−γ + (1− p) (B− hAu,W)

−γ

η(θd−θu)

(
hη

(
C

(r+1)(θd−θu)

)1−η
)1−γ

βh = −p (PD+ (θu − θd) Ad) (B− hAd,W)
−γ

−(1− p) (PD− (θu − θd) Au) (B− hAu,W)
−γ

(79)
where

Ad,W = P min (0, rm − θd) + T (80)

Au,W = P min (0, rm − θu) + T (81)

C = hPD− (r+ 1) (S− y1) (θd − θu) (82)

D = (r− θd) (rm − θu)
+ + (θu − r) (rm − θd)

+ (83)

3.5 Parameters

First period is 20 years and household earns 50, 000 a year, which gives y1 = 1, 000, 000.
We assume the same to occur during the second 20-years period, with y2 = 1, 000, 000. In
the alternative set of simulations we also assume y2 = 200, 000 (social security payments)
instead of a million, so that the main source of living is housing and savings in period
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2. The coefficient of time preference estimated by Cocco [4] is 0.98 per annum. Because
periods 1 and 2 are 20 years “apart,” therefore we use

β = (0.98)20 = 0.66761 (84)

We adopt other numerical parameters estimated by Campbell and Cocco [2] and Cocco
[4]: risk aversion (γ = 3) and the preference for housing (η = 0.1). We compound the
riskless rate (2% per annum) and the mortgage rate (4% per annum) as follows

(1+ 0.02)20 = 1+ r =⇒ r = 0.48595 (85)

(1+ 0.04)20 = 1+ rm =⇒ rm = 1.1911 (86)

Note that the mortgage rate may seem high at first sight (119.11%), but this corresponds to
interest cumulated at 4% p.a. over a period of 20 years. We also (arbitrarily) set θu = 0.5,
θd = −0.5, the probability of the house terminating underwater p = 1

4 and the house
value to $100, 000 (about 5% of the total income).

Also, in this first set of comparisons, the loan to value ratio λ has been set to 100% and
the maintenance costs T to zero.

4 Results

y2 = 1, 000, 000 y2 = 200, 000
Workout

no yes no yes
h∗ 1.69216 2.78985 1.14761 1.89205
S∗ −206, 755 −323, 960 181, 590 102, 102
c1 1, 206, 750 1, 191, 560 818, 410 808, 108
E [c2] 533, 520 518, 612 361, 828 351, 718
U1 −6.34569 · 10−12 −5.94916 · 10−12 −1.37967 · 10−11 −1.29346 · 10−11

∆c1 [$] $55, 666.6 $37, 752.6

Automatic workout mortgage improves the expected utility. In our simulations the
utility increase amounts to increasing consumption in period 1 by about $40, 000 to $55, 000,
which represents up to 55% of the initial value of the house ($100, 000).

AWM feature increases housing consumption at optimum. It also increases borrowing
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(reduces savings). We assert that the extra insurance may inhibit the precautionary saving
motive, inducing dis-saving. However consumption is reduced in both periods as more
housing volume is purchased. The probable cause of this reduction is the presence of
workout premium which represents extra cost to prospective homeowners. Also, there is
no mechanism to borrow against home equity in our simple model.

Some interesting effects are illustrated on graphs. Dashed line denote standard mort-
gages. Solid lines are AWMs. Demand for housing h dominates if AWMs are used. This is
the case for the entire range of housing preference parameter η as well as for the the risk
aversion parameter γ. (Figures 1 & 2.) Converse observations apply to savings S. (Figures
3 & 4.) Interestingly, demand for housing attains maxima for those intending to reverse-
mortgage α ≈ 40% of equity (without workout) and about α ≈ 80% of equity (AWMs).
(Figure 5.) We therefore assert that AWMs are particularly suited for those who intend to
sell or reverse-mortgage a significant fraction of their home equity. Consequently, savings
under AWM and for high α’s decrease accordingly. (Figure 6.)
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5 Figures

Solid line is AWM.
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Figure 1: Demand for housing h as a function of housing preference parameter η.
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Figure 2: Demand for housing h as a function of risk aversion parameter γ.
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Figure 3: Savings S as a function of housing preference parameter η.
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Figure 4: Savings S as a function of risk aversion parameter γ.
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Figure 5: Demand for housing h as a function of reverse-mortgaging parameter α.
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Figure 6: Savings S as a function of reverse-mortgaging parameter α.
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